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Abstract. Electromagnetic fields produced by the spike pulse of hard radiation ore discussed. 
We propose a model from which the electromagnetic field of a running pulse generaled by a line 
cumnt can be derived. The solution of the electrodynamic problem is found by the Smimov 
method of incomplete separation of varinbles by means of the Riemann method. 

While travelling through a medium, hard radiation produces charged particles. Atoms absorb 
quanta of radiation by the photoabsorption effect. The angular distribution of photoelectrons 
is proportionate to 1 + 4(v/c) cos r? where c is the velocity of light, v is the velocity of 
photoelectrons, 0 is the angle, which is reckoned from the direction of quantum motion. 
Therefore, photoabsorption results in a partially regular motion of charged particles, and 
this current of photoelectrons produces an electromagnetic field. 

By virtue of the fact that the source of the photoelectrons is the pulse of radiation, the 
front of the domain generating photoelectrons moves with the velocity of light. Thus the 
front of the resulting current pulse (but, of course, not the electrons themselves) propagates 
at light velocity. The track length of the radiation quanta is much larger than that of the 
photoelectrons, hence the current pulse is considered to be a line current. 

The electromagnetic field produced by hard radiation has been considered earlier for 
cases when the approximation of the line current was not applicable [l,  21. In turn, the line 
current pulse with the velocity of light has been taken as a source of the radiation of a line 
antenna [3]. The current in a particular point of the antenna is a function of time. reckoned 
from the moment when the front of the pulse arrives at this point. Here we are looking for 
the solutions where the current pulse is an arbitrary function of time and location. 

The expression for the current density j in cylindrical coordinates p. rp, z is 

j = 

1 S(P) j ,  = -h(r - z)h(z)-J(z. r )  

j z = O  5 x 0  

(1) r > 0 
27I P 

where J ( z ,  r )  is the total current, r = ct, h(r - z )  is the Heaviside function, and 6(p) is 
the Dirac function. 
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Components of the vector of electric field strength E and of magnetic induction B 
satisfy the equations 

The initial conditions are 

E = B = O  r<O. 

Let us try to find the solution of (2) in the form 

(3) 

The function U is the Bromwich-Borgins potential [4,5] which is generally used for 
electromagnetic waves in free space. Remarkably, it also holds for some special types 
of cunent distribution 161. Substituting Eo, EL, and B, into (2) one can prove that the first 
two equations are satisfied, and the third one together with the initial conditions (3) yield 

u = O  f o r r e 0  

where U = &/a?. 
The rp-component of magnetic induction is 

B, = -au/ap. (5 )  

The solution of problem (4) can be found by the Smirnov method of incomplete 
separation of variables [7], and subsequent solution of the equation depending on the 
cordinote z and time r with the help of the Riemann formula. 

We use the Fourier-Bessel transform 

p d p  f (P.  z, r ) J o ( v )  

f ( p , z , r )  = J l o " s d i f ( s , z , T ) ~ o ( ~ p )  

where JO is the Bessel function of the first kind of order zero. From ( I )  one obtains 
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while the second part of (4) yields 

u(s, z ,  r )  0 for r c 0. 

The last result leads to the homogeneous initial conditions for the Cauchy problem 

U = 0 h / a 7  = 0 for r = 0 z E (-CO, +CO). 

We can obtain the unique solution of this problem using the Riemann method [SI (the 
Riemann function is Jo(s[(r - 7’)‘ - ( z  - z ’ ) ~ ] ’ ~ ~ )  

u(s, z ,  5) = - j‘ d7’ l,+z-r dz’h(z’)h(T‘ - z’)J(z’, r‘)J&[(r - r‘)’ - (2 - z!)’]’/~). 

Then the solution of problem (4) can be represented by the integrals 

-r’+r+r 1 

C O  

--r’+z+7 1 

C O  
0, z ,  5 )  = - jz d 7 f l , + z - r  dz’h(z‘)h(r’ - z‘)J(z’,  7’) 

If the current pulse has finite duration T ,  we can denote it in ( I )  explicitly 

j z (p ,  z ,  T) = -h(r - z)h(z)h(T - 7 t z)-J(z,  T) 
1 S(P)  r =- 0. 

2n P 

In this case integrand in (6) contains the additional factor h(T - ?’+ z’). 
Let the pulse of current have a duration T = CO. Substituting 

L m s d s  J ~ ( s p ) J ~ ( s ~ ~ ~ - ~ ’ ~ ~ - ~ z - z ~ ~ ~ l ~ ~ ~ ~  = 1 - S ( P - [ ( T - ~ ‘ ) ’ - ( Z - Z )  I 2  1 1/2 
P 

into (6) we obtain the following 

--r’tz+i 
U = - 1 j‘dr’! dz’h(z‘)h(r‘ - z’)J(z’, s’)S(p - [(r - r‘)’ - ( z  - z )  I 2 I I/Z ). (7) 

CP 0 r’+>-T 

From relation (7) we have the solution of (4) 

where the total current is taken as a function of ti,2 = r‘Fz’ and the last argument 5; must 
be replaced by T +z  - p z / ( 7  - z - Si). The solution is non-zero within the sphere of radius 
r centred at the origin of the coordinates where the current pulse starts, and the wavefront 
equation is T = (pz  +z’)’/’. One can obtain the latter result by simple geometric treatment 
using the causality principle. 

The solution of (S) can be generalized in the case when the pulse of current has duration 
T # CO. If the time of observation 7 is less than T + ( p 2  + z2)’/*, the field is described by 
expressions (5), (8). If r =- T + (p2 + z2)]”, then the upper limit in the integral (8) is T. 



4084 V V Borisov and A B Utkin 

Let the line of current have a finite length I and the duration of the pulse be infinite 
(T  i CO). Again, one can denote it explicitly. In this case the integrand (6) contains the 
additional factor ft(1- 2'). For the time of observation r < l +  (p2+ ( z  - 1)2)1/2 the solution 
(8) holds; for t > I t ( p 2  t (z - 1)')''' we have 

The only difference between (8) and (9) is the lower boundary of the integral which 
corresponds to the wave which is emitted in the current track end (p = 0, z = I )  at 
r = l .  

Let the current pulse have finite duration T .  For t 3 1 + (p2 + (z - 1)2)1/2 and T > 
r-l-(pZ+(z-l)2)'/2 the integral in (9) has the upper limit T ;  if T s: r-1-(p2+(z-1)z)'/z 
then U = 0. 

Formulas (S ) ,  (9) are correct for a 8-pulse of current. 
Now we consider the fields generated by a spike pulse of hard radiation in some simple 

cases. Let the hard radiation be absorbed by an inhomogeneous medium. If the total current 
can be approximated as 

J ( z ,  r )  = Q(z)i(r - z )  z E (0.00) 

then relation (8) gives 

If io;) =&(ti), we obtain, with the use of (5) 

t2 - pz - z2  
S =  

The second term contains information about the absorption of radiation by the atoms of the 
medium and hence about the properties of the latter. 

Let the hard radiation be absorbed by the atmosphere of the earth. The source of the 
radiation is at a height H ,  the frequency of the hard radiation is U. The distribution of 
photoelectrons is proportionate to the spectral intensity of the radiation and if J (z ,  t) = 
@(z)S(r - z) then 

2(r  - z) 

J ( z ,  T )  = 0(0)8(r - z ) e x p ( ~ ~ z  - (x,(H)/a)(exp(az) - 1)) 

where 1y is the baroinetric constant, x , ( H )  is the coefficient of absorption at the height of the 
source, and 0 ( 0 )  is a constant. The radiation propagates to the earth surface. Substituting 
J ( z ,  r )  into (lo), we obtain 
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Let the radiation be absorbed in a bounded region and the length of the current line 
be 1.  Let the total current of the photoelectrons be J ( z ,  r )  = J ( r  - z ) .  In particular, this 
corresponds to the model of full ionization of a homogeneous medium. With the help of 
(5), (S ) ,  (9) we can obtain 

x J ( r - I - ( p Z + ( z - 1 ) )  2 l r -  ) 1 . 
The relation obtained is in agreement with the results of [31. 
If the absorbed energy density of the hard radiation can be described as a continuous 

function, z E (O,Z), and the total current of photoelectrons can be approximated as 
J ( z , T )  = @(z)S(r - z), @(O) = @ ( I )  = 0, we obtain from (9, (8). (9) the following 
expression 

S E  (0,1) r # z. 

The factor a @ f a S  is proportional to the gradient of the absorption energy density. 
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